Mouse rods signal through gap junctions with cones
نویسندگان
چکیده
Rod and cone photoreceptors are coupled by gap junctions (GJs), relatively large channels able to mediate both electrical and molecular communication. Despite their critical location in our visual system and evidence that they are dynamically gated for dark/light adaptation, the full impact that rod-cone GJs can have on cone function is not known. We recorded the photovoltage of mouse cones and found that the initial level of rod input increased spontaneously after obtaining intracellular access. This process allowed us to explore the underlying coupling capacity to rods, revealing that fully coupled cones acquire a striking rod-like phenotype. Calcium, a candidate mediator of the coupling process, does not appear to be involved on the cone side of the junctional channels. Our findings show that the anatomical substrate is adequate for rod-cone coupling to play an important role in vision and, possibly, in biochemical signaling among photoreceptors. DOI: http://dx.doi.org/10.7554/eLife.01386.001.
منابع مشابه
A Novel Signaling Pathway from Rod Photoreceptors to Ganglion Cells in Mammalian Retina
Current understanding suggests that mammalian rod photoreceptors connect only to an ON-type bipolar cell. This rod-specific bipolar cell excites the All amacrine cell, which makes connections to cone-specific bipolar cells of both ON and OFF type; these, in turn, synapse with ganglion cells. Recent work on rabbit retina has shown that rod signals can also reach ganglion cells without passing th...
متن کاملMicrocircuitry of the dark-adapted cat retina: functional architecture of the rod-cone network.
The structure of the rod-cone network in the area centralis of cat retina was studied by reconstruction from serial electron micrographs. About 48 rods converge on each cone via gap junctions between the rod spherules and the basal processes of the cone pedicle. One rod diverges to 2.4 cones through these gap junctions, and each cone connects to 8 other cones, also through gap junctions. A stat...
متن کاملMouse Ganglion-Cell Photoreceptors Are Driven by the Most Sensitive Rod Pathway and by Both Types of Cones
Intrinsically photosensitive retinal ganglion cells (iprgcs) are depolarized by light by two mechanisms: directly, through activation of their photopigment melanopsin; and indirectly through synaptic circuits driven by rods and cones. To learn more about the rod and cone circuits driving ipRGCs, we made multielectrode array (MEA) and patch-clamp recordings in wildtype and genetically modified m...
متن کاملSome OFF bipolar cell types make contact with both rods and cones in macaque and mouse retinas
This study compared the types of OFF bipolar cells found in the macaque retina with those found in the mouse retina and determined whether these OFF bipolar cells make direct contacts with both rods and cones by serial section transmission electron microscopy. We performed scatter plots and cluster analysis of the morphological variables of their axon terminals such as the stratification level,...
متن کاملConnexin 36 in photoreceptor cells: studies on transgenic rod-less and cone-less mouse retinas.
PURPOSE Rod-cone gap junctions permit transmittal of rod visual information to the cone pathway. A recent report has shown that this transfer does not occur in mice in which the gap junction protein connexin 36 is knocked out indicating that rod-cone gap junctions are assembled from this protein. It remains unresolved, however, whether rods, cones or both express connexin 36. We have tried to a...
متن کامل